Выпускная система и выпускные коллекторы 2
Практические примеры
Очевидным вопросом здесь может быть следующий: какой прирост мощности и экономичности можно ожидать, если полностью переделать всю выпускную систему с упором на уменьшение обратного давления? Прирост может быть разным, но приводимые далее примеры покажут, что возможно получить.
Первый двигатель представляет собой экспериментальный четырехцилиндровый двигатель для испытаний на стенде, изначально оснащенный глушителем промышленной конструкции (типичная конструкция с обратным потоком, используемая на многих автомобилях) и короткой прямой выхлопной трубой большого диаметра. После измерения основной кривой мощности стандартный глушитель был заменен специальной конструкцией, которая обеспечивала почти нулевое сопротивление потоку. Фактически, проверки, проведенные на стенде, показали довольно заметное увеличение мощности по сравнению с прежней выпускной системой. При отсутствии других изменений на двигателе уменьшенное обратное давление дало прирост мощности в 8% во всем диапазоне оборотов. Было замечено улучшение экономии топлива в 3-8 % с типичным значением около 6%.
Практическое использование обсуждаемых изменений можно также было видеть на одном из испытательных двигателей V8 с рабочим объемом 5735 см5, изначально оснащенного промышленной одинарной выпускной системой. Для определения базового уровня была измерена стандартная мощность, которая составила 152 л. с. с выпускной системой, которая имеет ненормально высокое обратное давление в 1,13 кгс/см2. Затем стандартный катализатор с шариками был убран, а промышленный глушитель был заменен глушителем CYCLONE SONIC TURBO. Мощность при этом подскочила до 210 л. с., а обратное давление в выпускной системе снизилось до 0,25 кгс/см2. В заключение была установлена двойная выпускная система, которая была тщательно изготовлена для уменьшения обратного давления. Этот узел, оснащенный двойными турбо-глушителями CYCLONE SONIC, но по-прежнему использующий стандартные выпускные коллекторы, обеспечивал заметный прирост мощности до 47% по сравнению со стандартной выпускной системой. Измеренная мощность составила 224 л. с., а обратное давление в системе составило величину менее 0,07 кгс/см2. Однако такой прирост мощности дается не только путем больших материальных затрат при покупке деталей. Двойная выпускная система с высоким потоком может быть заметно шумнее стандартной или даже модифицированной одинарной выпускной системы. Фактически, некоторые системы с турбо-глушителями могут не удовлетворять требованиям по шумности.
Если автомобиль должен удовлетворять требованиям по токсичности выхлопных газов, то частью выпускной системы должен стать катализатор. К счастью потери мощности могут быть уменьшены, если используются катализаторы с двойной сотовой структурой. Они должны быть расположены перед глушителями и по возможности ближе к выпускным коллекторам. Сопротивление может быть уменьшено еще больше путем изменения входной и выходной частей катализатора в длинные конусные каналы. В качестве дополнительного преимущества катализаторы также уменьшают шум от выпускной системы.
Выпускные коллекторы
На первый взгляд задача отвода выхлопных газов из цилиндров может показаться простой, не требующей каких-то особых конструкторских ухищрений. Однако, как говорилось ранее, двигатель внутреннего сгорания является сложным агрегатом, который функционирует при тщательно продуманном взаимодействии многих динамических систем. Хотя выпускные коллекторы позволяют двигателю легче "выдыхать" путем уменьшения потерь при прокачке, которые имеют место, когда поршень движется вверх при такте выпуска. Это является наиболее очевидным преимуществом, которое могут предложить трубчатые впускные коллекторы.
Если такт выпуска происходит только один раз, то создание выпускных коллекторов было бы просто задачей по уменьшению сопротивления потоку. Но даже при 2000 об/мин двигатель V8 выдает примерно 70 тактов выпуска за секунду на один блок из четырех цилиндров. Эти импульсы давления, как мы увидим, взаимодействуют с потоком выхлопных газов, образуя сложную динамическую смесь, которая может воздействовать на оптимальный размер труб коллектора, их длину и на общую конструкцию. Может быть, довольно сложно полностью понять динамику потока, но настройка выпускной системы может быть "ключом" к получению дополнительной мощности. Вам потребуется правильная комбинация, и здесь будут даны некоторые рекомендации по достижению лучших результатов.
Трубчатые или цельные коллекторы?
Выпускные трубчатые коллекторы могут улучшить мощность двигателя, но они не всегда являются лучшим выбором для обычного форсированного (не гоночного) двигателя. Хотя трубчатые коллекторы являются более эффективными в диапазонах средних и особенно высоких оборотов, но если двигатель работает с низкими оборотами, то литые чугунные коллекторы дают хорошие рабочие характеристики, являются более.дешевыми (если вы уже имеете их), более компактными и менее склонными к образованию утечек выхлопных газов. Идеальной областью использования для литых коллекторов являются грузопассажирские автомобили, для которых важен крутящий момент на низких оборотах. Если у вас двигатель высокой степени форсиров-ки, то вы сможете получить заметный прирост мощности и топливной эффективности путем использования выпускных коллекторов, которые устанавливаются на обычные мощные двигатели.
Показанный здесь двигатель FORD INDY с двумя верхними распределительными валами использует одну из хорошо известных конструкций трубчатого выпускного коллектора.
Цельные выпускные коллекторы неэффективны при больших объемах потоков и на высоких оборотах из-за особенностей их конструкции. Почти все коллекторы, включая даже конструкции для форсированных двигателей, имеют короткие каналы, которые объединяются в общую камеру, имеющую конструкцию, которая не "заботится" о потоке. Когда выхлопные газы попадают в выпускной коллектор, они встречают два главных препятствия:
• каналы с сопротивлением потоку;
• импульсы от каждого цилиндра влияют друг на друга и сильно увеличивают сопротивление потоку, так как длины отдельных труб для разных отверстий часто очень малы.
Как работают выпускные коллекторы
Трубчатые выпускные коллекторы подвержены обоим недостаткам, указанным выше. При увеличении длины каждой трубы и плавных изгибов, а также эффективной изоляции отдельных каналов, применение выпускного коллектора трубчатого типа улучшает поток и практически убирает влияние цилиндров друг на друга. Когда выпускные коллекторы сочетаются с эффективной выпускной системой (высокопоточные глушители и т. д.), то дополнительную мощность можно получить путем продувки цилиндров.
Инерционная и волновая продувка
Может показаться, что устройство, сделанное из металлических труб, и в котором нет движущихся деталей, может втягивать свежую топливовоздушную смесь через открытый впускной клапан почти над малоподвижным поршнем и поможет освобождать камеру сгорания от выхлопных газов. Это напоминает установку турбонагнетателя, которому не нужен подвод мощности: нет приводных ремней, нет вращающихся турбин; он выдает необходимую дополнительную мощность. Может показаться удивительным, но трубчатые выпускные коллекторы могут обеспечить этот прирост мощности, когда они правильно изготовлены. Поэтому, давайте заглянем внутрь труб и рассмотрим, как работает этот воображаемый "турбонагнетатель".
Эта "путаница" труб большого диаметра — выпускной коллектор STREET HEMI выпуска фирмы STAHL, который использует инерционную продувку и резонансную настройку для очистки камер сгорания от выхлопных газов и улучшения мощности.
Когда импульсы давления проходят через каждую выхлопную трубу, они могут переносить энергию, которая действует двумя путями для генерации эффекта продувки и улучшения мощности. Во-первых, движущая масса газов имеет инерционные свойства. Инерция представляет собой тенденцию движущихся тел к сопротивлению любым изменениям в их движении. Поток газов высокого давления, который выходит из каналов головки блока цилиндров, имеет тенденцию сохранять движение через трубы коллектора, и инерция этих газов, если она достаточно сильная, будет втягивать дополнительную топливовоздушную смесь через открытые впускные и выпускные клапаны при перекрытии клапанов.
Также имеется второй путь, которым выпускные коллекторы помогают удалить выхлопные газы из цилиндра: ударная волна низкого давления, образуемая, когда импульс выпускных газов высокого давления выходит из системы, может помочь втянуть дополнительную топливовоздушную смесь в цилиндр при перекрытии клапанов. Чтобы легче понять, как этот механизм работает, выберем одну трубу коллектора. Как уже указывалось, когда впускной клапан открывается, выходящие под высоким давлением газы "выскакивают" в трубу и образуется импульс давления. Этот импульс, движущийся со скоростью звука, быстро достигает конца выхлопной трубы, где образуется отраженная волна с давлением ниже атмосферного. Эта обратная волна движется обратно по трубе к выпускному клапану также со скоростью звука, которая изменяется с температурой, но обычно составляет 360-400 м/сек. Путем изменения длины первичной трубы коллектора время, требуемое для возврата импульса к выходному отверстию, будет изменяться. С помощью тщательного подбора этой длины возможно подобрать время возврата волны низкого давления к оборотам двигателя. Для трубы конкретной длины и определенного значения оборотов двигателя, импульс низкого давления может быть точно настроен так, что он достигнет выпускного отверстия при перекрытии клапанов, когда он поможет выдуть остаточные выхлопные газы, которые поршень не может выдавить из камеры сгорания. Эта отраженная волна, в свою очередь, вызывает втягивание потока топливовоздушной смеси в цилиндр через открытый впускной клапан перед тем, как поршень начнет такт впуска.
Регулировка длины трубчатого выпускного коллектора для оптимизации продувки обратной волной называется резонансной настройкой. К сожалению, в двигателестроении всегда имеются недостатки,' которые сопровождают получение прироста мощности. Длина трубы выпускного коллектора обеспечивает нужное время для возврата обратного импульса только в узком диапазоне оборотов двигателя. Если эта труба относительно короткая, то резонансный эффект наступает в области высоких оборотов; если она относительно длинная, то эффект проявляется в области низких оборотов двигателя.
Настройка выпускного коллектора
Подобно другим важным деталям для получения мощности, находящимся внутри или снаружи двигателя, выпускной коллектор является одной из частей системы "дыхания" двигателя. Чтобы быть наиболее эффективным, он должен работать совместно с другими деталями этой системы. "Командным центром", определяющим характеристики выпускной системы "дыхания" двигателя, является распределительный вал, а общие характеристики выпускной системы могут быть непосредственно связаны с фазами газораспределения распредвала. Выбор распредвала существенным образом определяет, в какой области оборотов двигателя будут достигаться- максимальная мощность и крутящий момент. Для гоночного двигателя длины и диаметры деталей выпускного коллектора должны сочетаться с характеристиками, определяемыми распред-валом. Для высоких оборотов конструкция выпускного коллектора должна включать в себя трубы большого диаметра и относительно короткие и приемные трубы большого диаметра. Для работы на двигателях повседневного применения и топливной экономичности выпускные коллекторы имеют конструкцию с трубами малого диаметра и относительно большой длины.
Всегда опасно делать какие-либо обобщения, но из-за общности конструкций большинства двигателей V8 можно сделать два заявления. Первое состоит в том, что за исключением автомобилей с выдуванием отработанных газов, выпускные коллекторы без приемных труб практически не работают. Конструкция с одинарной трубой эффективна на автомобилях, рассчитанных на использование гоночного топлива, так как турбокомпрессор полностью продувает цилиндры, направляя трубы коллектора к другим деталям. Во-вторых, практически все "обычные" выпускные коллекторы состоят из четырех отдельных труб, соединяющихся в большую приемную трубу. Такая конструкция делает возможным использование взаимодействующих ударных волн, образующихся в двигателе V8 от цилиндра к цилиндру, и является самым лучшим выбором для форсированных и гоночных двигателей.
Выпускной коллектор лучшей конструкции состоит из 4 отдельных труб, соединяемых в приемную трубу большого диаметра.
Поиск оптимального диаметра и длины труб для гоночного двигателя всегда требует большого объема стендовых испытаний. Метод "проб и ошибок" является одним надежным способом для подбора деталей, которые будут хорошо работать в выбранной области оборотов. Такая неопределенность в основном обязана тому, что каждый выпускной коллектор ^ производит множество ударных волн, которые затрудняют точный анализ. К счастью, повторная проверка основной конструкции двигателей V8 упростит наше понимание работы выпускного коллектора и может дать некоторые основные ориентиры для общей конструкции коллектора и подбора труб.
Такие специальные "выпускные коллекторы 180° конструкции устанавливались на линиях специального назначения, а конструкция фирмы STAHL с соединением болтами выпускались для спортивных моделей.
Многие люди склонны рассматривать двигатель V8 как два рядных 4-цилиндровых двигателя на общем коленчатом валу. На самом деле это далеко не так. Двигатель V8, по сути, представляет собой 4 двигателя V2, соединенных вместе в 90-градусной последовательности. Эта конструкция выдает неравномерный такт выпуска, разделенный на каждый блок цилиндров. Это в некоторой степени уменьшает потенциал мощности разделенных по блокам цилиндров выпускных коллекторов (4 цилиндра на один коллектор).
Определение лучшего диаметра труб и их длины для гоночного двигателя всегда требует большого объема стендовых испытаний. Неравномерное разделение такта выпуска на двигателях V8 приводит к такому смешиванию ударных волн в каждом из блоков цилиндров. Метод проб и ошибок часто является единственным надежным путем для оптимизации конструкции и получения максимальной мощности.
Для обеспечения равномерной последовательности продувки цилиндров на двигателе V8 некоторые из труб коллектора должны пересекаться с противоположным блоком цилиндров. Такие системы широко известны как 180-градусная конструкция, так как импульс выхлопных газов возникает в каждой приемной трубе каждые 180° поворота коленчатого вала. Недостатками этой системы являются достаточно критичные длины труб выпускного коллектора и то, что типичные двигатели V8 требуют трубы такой малой длины, что их часто невозможно сделать из-за несоответствующего расстояния между головками блока цилиндров.
Выпускные коллекторы с разделением по блокам цилиндров
Хотя система с разделением по блокам цилиндров (4 цилиндра на 1 коллектор) чуть менее эффективна, чем выпускаемый коллектор со 180-градусной конструкцией, но положительным явлением в этом случае является то, что она менее чувствительна к длине труб. Фактически большой объем стендовых испытаний требуется только для определения оптимальной длины труб при получении нескольких дополнительных лошадиных сил при создании гоночного двигателя.
Хотя выпускная система с разделением выпускных коллекторов по блокам цилиндров чуть менее эффективна, чем выпускной коллектор со 180-градусной конструкцией, она гораздо менее чувствительна к длине труб, и ее гораздо легче сделать и установить на автомобиль.
Испытания на стенде показали, что большинство двигателей нечувствительны к форме каналов, по которым выхлопные газы выходят из головки блока (выпускных каналов). Более того, пока общая конструкция выпускного коллектора обеспечивает поток, нет большой чувствительности к неровностям в трубах (иногда закрыто до 2/3 выхода в одном цилиндре), к изменениям в длине труб и их диаметре, но имеется большая чувствительность к числу изгибов и к их радиусам. Сильные изгибы существенно увеличивают сопротивление потоку и сглаживают эффект продувки, а это почти всегда приводит к снижению мощности.
Трубчатый выпускной коллектор с конфигурацией "три Y" выпуска фирмы DOUG THORLEY имеет упрощенную общую конструкцию, уменьшенное число изгибов и невысокую стоимость.
К счастью, трубы с длиной от 550 мм до 1200 мм выдают очень близкую мощность на большинстве форсированных или гоночных двигателей. Такая нечувствительность к длине очень полезна, так как это упрощает установку под автомобилем и позволяет сделать оптимальную общую конструкцию. Не стоит переживать по поводу почти незаметного эффекта неравной длины труб выпускного коллектора — изменение в длине до 300 мм и даже больше показывает очень небольшие отклонения по мощности. Можно оптимизировать мощность путем уменьшения сопротивления потоку благодаря сокращениям количества изгибов и увеличения их радиусов.
Выпускные коллекторы с конфигурацией "три Y"
Интенсивность по длине является основной причиной, по которой выпускные коллекторы с конфигурацией "три Y" хорошо работают. Конструкция типа "три Y" объединяет 4 первичные трубы в две пары вторичных труб примерно на 1 /3 расстояния до приемной трубы. Такая конфигурация "4->2->1" существенно упрощает общую конструкцию, уменьшает число изгибов и снижает стоимость. Испытания, которые были проведены на этих коллекторах, показали, что они производили мощность, лишь ненамного меньшую, чем качественный выпускной коллектор с конфигурацией "4->1". Особенно это выявилось при работе с распредвалами, обеспечивающими продолжительность открывания клапанов более 270°. Однако, когда даже лучшие коллекторы типа "три Y" используются с распредвалами, обеспечивающими продолжительность открывания клапанов более 270°, они часто обеспечивают существенно меньшую максимальную мощность, чем качественные выпускные коллекторы "4-> 1".
Для использования в двигателях повседневного применения коллекторы типа "три Y" должны серьезно анализироваться, как практический шаг между цельными выпускными коллекторами и коллекторами "4->1". Хотя многие конструкторы-энтузиасты считают коллекторы типа "три Y" более подходящими для двигателей с низкой степенью сжатия, используемых в грузовых автомобилях. Качественные коллекторы конфигурации "три Y" обеспечивают хороший уровень мощности в двигателях средней форсировки для автомобилей повседневного применения, особенно при работе совместно с высокопоточными выпускными системами, включающими поперечную трубу, проходящую между коллекторами. Вдобавок к этому, коллекторы конфигурации "три Y',' часто выдают более широкий диапазон мощности, чем многие системы "4->1", что является дополнительной причиной для возможности их использования в двигателях повседневного применения на тяжелых автомобилях или совместно с автоматической трансмиссией.
Выпускаемый коллектор A. R.
ЕСЛИ вы делаете форсированный двигатель для установки на автомобиль с автоматической трансмиссией, то усилия должны быть направлены на оптимизацию крутящего момента на низких оборотах. Для обеспечения этого некоторые конструкторы-энтузиасты могут выбрать выпускной коллектор с первичными трубами относительно малого диаметра (38-41 мм), так как малые трубы поддерживают высокую скорость выхлопных газов, улучшают инерционную продувку и обеспечивают хорошие значения крутящего момента на низких и на средних оборотах. К сожалению, эти трубы малого диаметра создают дополнительное сопротивление потоку на высоких оборотах двигателя, особенно у двигателей мощностью 325 л. с. и более. С другой стороны, если вы используете первичные тубы большого диаметра для улучшения мощности на высоких оборотах, то эффективность продувки на низких оборотах уменьшится, а крутящий момент и топливная эффективность пострадают на типичных оборотах для режима движения. Может показаться, что можно произвести настройку мощности с одного или с другого конца диапазона оборотов; невозможно иметь ее на обоих концах диапазона. Это было в большинстве случаев до появления выпускных коллекторов A. R.
Название "A. R." в обозначении коллекторов соответствует названию "ANTI-REVERSION" и является торговой маркой фирм CYCLONE и BLACK JACK. Понятие "REVERSION" относится к нежелательному обратному потоку выхлопных газов во впускную систему, который может иметь место, когда скорость выхлопных газов в первичных трубах коллектора мала и инерционная продувка имеет недостаточную энергию для втягивания топливовоздушной смеси в цилиндр при перекрытии клапанов. В этой ситуации обратное давление в системе выталкивает выхлопные газы в каналы впускной системы. Это явление обычно имеет место при низких оборотах, особенно когда выпускные коллекторы с большим диаметром труб сочетаются с распредвалами с высокой продолжительностью перекрывания клапанов.
Конструкция выпускного коллектора A. R. использует трубы большого диаметра для достижения высокой мощности на высоких оборотах. Однако, коллектор внутри сконструирован так, чтобы уменьшить обратный поток, что приводит к эффекту продувки и уменьшению обратного потока у большинства выпускных коллекторов с малым диаметром труб. Приводимая далее таблица показывает основы работы коллектора A. R.: чувствительный к направлению и противодействующий обратному потоку конус устанавливается на поверхность коллектора, что обеспечивает малое сопротивление прямому потоку, но заметно ограничивает обратный поток. Вдобавок, коллекторы A. R. позволяют полезным волнам отрицательного давления легко проходить к клапанам и к камере сгорания и ограничивают волны положительного давления, которые уменьшают мощность двигателя. Хотя выпускные коллекторы A. R. и менее чувствительны к диаметру труб, размер труб по-прежнему определяет в некоторой степени, какая максимальная мощность будет выдаваться в диапазоне оборотов двигателя. Перед тем, как вы выберете конкретный коллектор, обсудите предполагаемый характер его использования с производителем коллекторов и учтите данные вам рекомендации. Однако, недостатки от использования диаметра первичных труб коллектора A. R., который слишком велик для применения, меньше, чем у обычного коллектора.
Выпускаемый коллектор A. R. также может во многих случаях эффективно компенсировать некоторые потери мощности, связанные с обратным потоком, происходящим от неточного подбора деталей выпускной системы. К примеру, обычной причиной обратного потока на низких оборотах являются профили кулачков распределительного вала со слишком большой продолжительностью открывания клапанов и/или перекрытием клапанов, впускной коллектор, разработанный для работы с высокими оборотами или карбюратор с потоком слишком большой емкости для двигателя. Выпускные коллекторы A. R. смещают потери мощности, связанные с этими деталями.
В заключение, коллекторы A. R. могут также вносить вклад в величину крутящего момента при частично открытой дроссельной заслонке и в топливную эффективность двигателя. Для гонок "на выживание", когда расход топлива играет большую роль, использование коллекторов A. R. может увеличить вероятность победы. Фактически, коллекторы A. R., по-видимому, обеспечивают положительный вклад во всех областях: от быстрой реакции на перемещение дроссельной заслонки на обычном автомобиле до возможности быстрого прохождения поворотов на гоночной трассе. Практически без исключений, сравнительные испытания обычных выпускных коллекторов и коллекторов A. R. показали, что конструкция A. R. является лучшей. Это во многих случаях может обеспечить лучшую мощность на низких и высоких оборотах в сочетании с улучшенной топливной эффективностью. Это тот редкий случай, когда вы можете иметь все!
Имеются два других важных аспекта использования выпускных коллекторов A. R., которые проявлялись при проведенных испытаниях на стенде и в движении. Первым является то, что вы должны использовать поперечную трубу с коллектором A. R. для получения вклада в уменьшение обратного потока. Без поперечной трубы, соединяющей обе приемные трубы (или выхлопные трубы рядом с приемными трубами), большинство преимуществ в крутящем моменте на низких оборотах и в топливной экономичности будет потеряно, а коллектор A. R. будет работать как обычный выпускной коллектор. Точно неизвестно, почему это происходит, но это происходит почти во всех случаях. Всегда используйте поперечную трубу с выпускными коллекторами A. R.
Во-вторых, коллекторы A. R. "очищают" карбюратор, улучшая вакуум у дополнительных диффузоров. Фактически, более сильный вакуум у дополнительных диффузоров от коллекторов A. R. позволяет использовать уменьшенные жиклеры для обеспечения того же самого соотношения воздух/топливо. Если вы пользуетесь одинарным четырехкамерным карбюратором HOLLEY, то топливные жиклеры первичной и вторичной камер потребуется уменьшить на 1 -2 размера, а в некоторых случаях на 3-4 размера для обеспечения нужного соотношения воздух/топливо.
Работа выпускных коллекторов A. R.
Выпускные коллекторы A. R. используют конус, чувствительный к направлению потока и предотвращающий обратный поток выхлопных газов. Он устанавливается на поверхности коллектора внутри первичных труб большого диаметра. Это обеспечивает малое сопротивление прямому потоку и увеличенное сопротивление нежелательному обратному потоку. 1 - высокий прямой поток выхлопных газов; 2 - низкий обратный поток выхлопных газов при перекрытии клапанов.
С выпускными коллекторами должна использоваться поперечная труба. Без этой трубы, соединяющей обе приемные трубы, большинство преимуществ в крутящем моменте на низких оборотах и в топливной экономичности будет потеряно.
Настройка выпускных коллекторов/дополнительные детали
Преимущества коллекторов А. R. и стандартные выпускные коллекторы
Выпускные коллекторы A. R. проявляют свои преимущества с помощью конуса, предотвращающего обратный поток и приваренного в месте соединения первичных труб и фланца крепления. Эти конусы чувствительны к направлению потока и помогают
Здесь показаны кривые мощности и крутящего момента для форсированного двигателя рабочим объемом 5359 см3, оснащенного головками блока цилиндров AIR FLOW RESEARCH. Двигатель не работал бы при полностью открытой дроссельной заслонке с оборотами низке 2800 об/мин со стандартными выпускными коллекторами "4->1". После установки выпускных коллекторов и оптимизации одинарного 4-камерного карбюратора двигатель выдавал стабильную мощность при полностью открытой дроссельной заслонке во всем диапазоне оборотов, начиная с 1800 об/мин. 1- мощность двигателя с коллекторами A, R.; 2- мощность двигателя с обычными выпускными коллекторами; 3- крутящий момент двигателя с выпускными коллекторами CYCLONE A.R.; 4 - крутящий момент двигателя с обычными выпускными коллекторами.
уменьшить поток выхлопных газов, поступающих в топливовоздушную смесь. Подобный, хотя и менее эффективный, направленный поток может быть получен в обычном выпускном коллекторе путем введения несогласованности между отверстием во фланце выпускного коллектора и выпускным каналом. Для получения ограничения потока в нужном направлении отверстие во фланце выпускного коллектора должно быть больше, чем диаметр выпускного канала. Несоответствие размеров канала и фланца будет иметь очень незначительное влияние на поток из канала, так как выхлопные газы поступают в трубу большого диаметра с меньшим сопротивлением, а выступающая кромка из-за несогласования размеров будет заметно уменьшать обратный поток в канал. Результатом будет то, что некоторый прирост мощности и крутящего момента в области низких и средних оборотов, обеспечиваемый коллекторами A. R., может появиться на кривых характеристик двигателя с обычными коллекторами.
Небольшой эффект, подобный эффекту от использования выпускных коллекторов типа А. К., может быть обеспечен в обычных выпускных коллекторах путем введения правильно расположенного несоответствия между отверстиями во фланце впускного коллектора и выпускным каналом в головке блока цилиндров.
Несоответствие размеров коллектора и канала должно быть тщательно подобрано, иначе могут пострадать общий поток через выпускной канал и мощность. Никогда не создавайте несоответствие между размером фланца выпускного коллектора и канала в головках блока цилиндров в верхней части канала. Все "полезное" несоответствие должно быть расположено в нижней части канала, где скорость потока минимальна. Чтобы правильно поместить несоответствие, важно учитывать расположение выпускных коллекторов на поверхности головки блока цилиндров. Может быть, необходимо приварить и пересверлить монтажные отверстия во фланце коллектора или установить переходные пластины на головки и просверлить новые отверстия во фланцах.
Одно замечание: если вы используете переходные пластины, то обращайтесь с каналами в пластинах как с продолжением выпускных каналов. Для оптимизации потока в канале переходные пластины должны быть соединены с головками, перед тем как головки блоков цилиндров будут проверяться и испытываться.
Поддерживайте тепло
Выпускные коллекторы помогают освобождать цилиндры от выхлопных газов и помогают впускной системе втягивать топливовоздушную смесь. Энергия для этого берется из энергии, содержащейся в самом потоке выхлопных газов. Чем больше энергия, которая может удерживаться внутри труб, пока газы не выйдут в приемную трубу и в выпускную систему, тем эффективнее будет работать выпускной коллектор. Одной из этих форм энергии является тепло, а тепло связано с объемом выхлопных газов и с их скоростью в трубах коллектора. Когда тепло рассеивается от деталей выпускной системы, то скорость выхлопных газов от этого уменьшается и в некоторых случаях это может уменьшить эффект продувки.
Отвод тепла от выпускных коллекторов может влиять на мощность другим, возможно даже более действенным способом: оно рассеивается в моторном отсеке, где нагревает выпускную систему и поступающий воздух. Испытания на стенде показывают, что увеличение температуры поступающего воздуха примерно на 6° С уменьшает мощность двигателя на 1%.
Детали для теплоизоляции от фирмы THERMO-TEC удерживают больше энергии внутри труб выпускного коллектора, пока выпускные газы не выйдут в приемную трубу или в выпускную систему, что увеличивает эффективность работы выпускного коллектора и турбокомпрессора.
По этим и другим причинам, включающим и технику безопасности, теплоизоляция деталей выпускной системы стала довольно популярной. Материалы для этого напоминают ткань и имеют различную конфигурацию: полосы, листы и круги. Большинство комплектов для теплоизоляции включают в себя хомуты, высокотемпературную оплетку. Эти детали довольно легко устанавливать.
Дополнительные детали для выпускных трубчатых коллекторов
Некоторые производители выпускных коллекторов, в том числе фирма STAHL HEADERS, предлагают выпускные коллекторы в форме наборов, а также и полностью собранные. Наборы включают в себя изогнутые куски труб, фланцы и приемные трубы, которые надо собирать в единый узел. Или они могут представлять собой изогнутые первичные трубы коллектора, которые предварительно слегка приварены к фланцам, и требуется лишь окончательное сваривание их с фланцами и с приемными трубами. В любом случае, выпускные коллекторы, поступающие в продажу в форме набора, стоят заметно дешевле и позволяют конструктору добавлять какие-то детали для специальных целей или экспериментальной настройки.
Большинство фирм производителей также предлагают широкий ассортимент отдельных изогнутых труб, приемных труб, фланцев, болтов, конусов типа A. R., прокладок и других деталей, необходимых для изготовления выпускных коллекторов. Фирма STAHL HESDERS продает различные неправильно изогнутые трубы, которые представляют собой куски труб, неправильно согнутых при изготовлении трубчатых выпускных коллекторов. Это новые трубы различной формы, длина которых может доходить до 13 м, а диаметр можно подобрать от 32 мм до 54 мм с шагом 3 мм. Такие детали дают возможность без больших затрат изготовить выпускной коллектор для любой выпускной системы.
Системы отвода вакуума
За последние 10 лет преимущества подачи вакуума в масляный поддон стали хорошо известны. Низкое давление внутри двигателя помогает предотвратить детонацию путем уменьшения загрязнения поступающей топливовоздушной смеси.и камеры сгорания маслом из системы смазки двигателя. Вдобавок, это также помогает предотвратить утечки масла из прокладок и сальников и может часто привести к появлению дополнительной мощности путем ограничения потерь из-за сопротивления масла.
Такие преимущества могут быть очень важными на гоночных двигателях, но они имеют меньшее практическое значение для форсированных двигателей повседневного применения. На "повседневных" двигателях степень сжатия заметно ниже и там редко используются маслосъемные кольца низкого усилия, которые существенно снижают потенциальную детонацию, вызванную попаданием масла в камеру сгорания. Однако для тех, кто хочет проанализировать добавление вакуумной системы к своему форсированному или гоночному двигателю, адресуется следующая информация.
Набор от фирмы EDEL BROCK содержит детали, для создания "гоночной" системы на обычных двигателях. Сопло вваривается в выпускную систему и в ней создается низкое давление (разрежение), когда мимо сопла проходят быстро движущиеся выхлопные газы.
На высоких оборотах выхлопные газы движутся по выпускным коллекторам со скоростью, достаточной для их использования в качестве своеобразного воздушного насоса. В систему вваривается своеобразное сопло, обычно в область приемной трубы, где образуется низкое давление от проходящих мимо выхлопных газов. Это низкое давление (вакуум) может быть использовано с помощью одной из систем для отвода вакуума, которые имеются в продаже. Приемное сопло соединяется с одноходовым клапаном (клапан предотвращения обратных вспышек), воспринимающим импульсы низкого давления, которые затем подводятся к двигателю через камеру для отделения масла. Эта камера возвращает собранное моторное масло обратно в масляный поддон. Такая система создания вакуума, работающая от выпускного коллектора и соединенная с вакуумной системой впускного коллектора для поддержания низкого давления при частично открытой дроссельной заслонке, будет поддерживать вакуум внутри двигателя при всех уровнях мощности.
Неудивительно, что вакуумная система с "приводом" от выпускного коллектора работает лучше всего с открытыми выпускными коллекторами (т. е. без выхлопных труб, глушителей и т. д.). Однако, если двигатель мощностью менее 400 л. с. работаете высокопоточной выпускной системой с двойными выхлопными трубами, то система отвода вакуума может работать и с полностью комплектной выпускной системой. Но даже если возможна работа вакуумной системы с источником в выпускном коллекторе на обычном двигателе, то имеются недостатки, которые нужно учитывать, особенно когда вакуумная система впускного коллектора также используется для поддержания вакуума в масляном поддоне в режимах холостого хода и частично открытой дроссельной заслонки. Если в двигателе имеется достаточно высокий вакуум, то масло может не поступать к направляющим втулкам клапанов, и будет иметь место ускоренный износ деталей клапанного механизма. Это может происходить даже при использовании бронзовых направляющих втулок клапанов, которые устанавливаются без сальников стержней клапанов (маслосъемных колпачков). Вместе с тем бронзовые направляющие втулки от фирм А. Р. Т. или K-LINE х